Extensions 1→N→G→Q→1 with N=C23.18D10 and Q=C2

Direct product G=N×Q with N=C23.18D10 and Q=C2
dρLabelID
C2×C23.18D10160C2xC2^3.18D10320,1468

Semidirect products G=N:Q with N=C23.18D10 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.18D101C2 = C23.5D20φ: C2/C1C2 ⊆ Out C23.18D10808-C2^3.18D10:1C2320,369
C23.18D102C2 = C24.56D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:2C2320,1258
C23.18D103C2 = C24.32D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:3C2320,1259
C23.18D104C2 = C243D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:4C2320,1261
C23.18D105C2 = C24.35D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:5C2320,1265
C23.18D106C2 = C24.36D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:6C2320,1267
C23.18D107C2 = C4⋊C4.178D10φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:7C2320,1272
C23.18D108C2 = C10.362+ 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:8C2320,1275
C23.18D109C2 = C10.402+ 1+4φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:9C2320,1282
C23.18D1010C2 = C10.732- 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:10C2320,1283
C23.18D1011C2 = C10.432+ 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:11C2320,1286
C23.18D1012C2 = C10.442+ 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:12C2320,1287
C23.18D1013C2 = C10.792- 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:13C2320,1320
C23.18D1014C2 = D5×C22.D4φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:14C2320,1324
C23.18D1015C2 = C10.632+ 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:15C2320,1332
C23.18D1016C2 = C10.672+ 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:16C2320,1336
C23.18D1017C2 = 2+ 1+4.2D5φ: C2/C1C2 ⊆ Out C23.18D10808-C2^3.18D10:17C2320,870
C23.18D1018C2 = C4216D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:18C2320,1228
C23.18D1019C2 = C42.118D10φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:19C2320,1236
C23.18D1020C2 = C10.342+ 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:20C2320,1273
C23.18D1021C2 = C10.352+ 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:21C2320,1274
C23.18D1022C2 = C10.422+ 1+4φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:22C2320,1285
C23.18D1023C2 = C10.742- 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:23C2320,1293
C23.18D1024C2 = C42.137D10φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:24C2320,1341
C23.18D1025C2 = C4221D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:25C2320,1351
C23.18D1026C2 = C42.166D10φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:26C2320,1385
C23.18D1027C2 = C42.168D10φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:27C2320,1391
C23.18D1028C2 = C4228D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:28C2320,1392
C23.18D1029C2 = C248D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:29C2320,1476
C23.18D1030C2 = C24.42D10φ: C2/C1C2 ⊆ Out C23.18D1080C2^3.18D10:30C2320,1478
C23.18D1031C2 = C10.1042- 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:31C2320,1496
C23.18D1032C2 = C10.1052- 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10:32C2320,1497
C23.18D1033C2 = C42.102D10φ: trivial image160C2^3.18D10:33C2320,1210
C23.18D1034C2 = (C2×C20)⋊15D4φ: trivial image80C2^3.18D10:34C2320,1500

Non-split extensions G=N.Q with N=C23.18D10 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.18D10.1C2 = (C2×C20).D4φ: C2/C1C2 ⊆ Out C23.18D10808-C2^3.18D10.1C2320,30
C23.18D10.2C2 = C10.802- 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10.2C2320,1322
C23.18D10.3C2 = C10.812- 1+4φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10.3C2320,1323
C23.18D10.4C2 = C23.4D20φ: C2/C1C2 ⊆ Out C23.18D10808-C2^3.18D10.4C2320,34
C23.18D10.5C2 = C42.105D10φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10.5C2320,1213
C23.18D10.6C2 = C42.140D10φ: C2/C1C2 ⊆ Out C23.18D10160C2^3.18D10.6C2320,1344

׿
×
𝔽